SIMILARITY

Budi Murtiyasa Muhammadiyah University of Surakarta

Plan

- Invariance point/line
- Eigen value and eigen vectors
- Similarity
- Orthogonal similarity
- Minimum polynomial

Reflection Transformation to X-axis

R unchanged, R called invariant point. All of the points on X-axis are <u>invariant point</u>

Reflection Transformation to Y-axis

R unchanged, R called invariant point. All of the points on Y-axis are <u>invariant point</u> Observe that on a transformation, it is possible there are any points or lines that unchanged by the transformation. Points or lines that unchanged by the transformations called <u>invariant points or invariant lines</u>.

Eigen value and eigen vector

- Suppose $X, Y \in \mathbb{R}^n$ and $A_{n\times n}$ is transformation matrix.
- Generally behave Y=AX, it is mean that by transformation matrix A, a vector X tranformed to a vector Y.

Suppose
$$\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
, a vector $\mathbf{X} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$
So $\mathbf{AX} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} = \mathbf{Y}$

In special case, it is possible that a vector X transformed to the vector X (or its multiple), so : $AX = \lambda X$, where λ scalar on field F. In this case, X called eigen vector or invariant vector (vektor tetap) or characteristics vector.

Suppose
$$\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
, if a vector $\mathbf{X} = \begin{pmatrix} 0 \\ -7 \end{pmatrix}$
Then $\mathbf{AX} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -7 \end{pmatrix} = \begin{pmatrix} 0 \\ -7 \end{pmatrix} = \mathbf{X}$

How to get a invariant vector X, such that: $AX = \lambda X$

- $AX = \lambda X$
 - $\boldsymbol{AX} \lambda \boldsymbol{X} = \boldsymbol{0}$
 - $AX \lambda IX = 0$
 - $(\boldsymbol{A} \lambda \boldsymbol{I})\boldsymbol{X} = \boldsymbol{0}$ (2)

(1)

• System (2) will be had a nontrivial solution (penyelesaian tidak nol) *X*, if :

 $|\mathbf{A} - \lambda \mathbf{I}| = 0 \tag{3}$

Expanding equation (3) will be got a polynomial in λ, that is P(λ), it is called characteristics polynomial; thus characteristics polynomial is P(λ) = |A - λI|

- Because A and I are given, from the equation (3) where P(λ) = 0, it will be got values λ that called eigen values (akar karakteristik).
- Furthermore, if the value λ subtitute to the equation (2), it will be got eigen vectors (vektor invarian / vektor karakteristik) X.

example

• Suppose a transformation matrix $\mathbf{B} = \begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix}$

Solution:

$$\boldsymbol{B} - \lambda \boldsymbol{I} = \begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 - \lambda & 2 \\ 3 & 4 - \lambda \end{pmatrix}$$

$$|\boldsymbol{B} - \lambda \boldsymbol{I}| = \begin{vmatrix} -1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = \{(-1 - \lambda)(4 - \lambda)\} - (2)(3)$$

- $|\boldsymbol{B} \lambda \boldsymbol{I}| = (-2 \lambda)(5 \lambda)$
- $\mathsf{P}(\lambda) = |\boldsymbol{B} \lambda \boldsymbol{I}| = 0$
- $(-2-\lambda)(5-\lambda)=0$

 $\lambda_1 = -2$ and $\lambda_2 = 5 \rightarrow Eigen value/$ $\rightarrow akar karakteristik$ Finding a eigen vectors can be done as follow:

For $\lambda = -2$, then :

$$(\boldsymbol{B} - \lambda \boldsymbol{I}) \boldsymbol{X} = \begin{pmatrix} -1 - \lambda & 2 \\ 3 & 4 - \lambda \end{pmatrix} \boldsymbol{X} = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \boldsymbol{0}$$

$$(1 - 2) \boldsymbol{H} (1 - 2)$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \stackrel{\mathsf{H}}{\sim} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \quad \begin{array}{c} \mathsf{n} = 2 \\ \mathsf{r} = 1; \text{ number of free var} = 1 \end{array}$$

A New equation: $x_1 + 2x_2 = 0$

Free variable: x_2 suppose $x_2 = \alpha \rightarrow x_1 = -2 \alpha$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2\alpha \\ \alpha \end{pmatrix} = \alpha \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

So, the first eigen vector $\mathbf{X}_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$

For $\lambda = 5$, then :

$$(\boldsymbol{B} - \lambda \boldsymbol{I}) \boldsymbol{X} = \begin{pmatrix} -1 - \lambda & 2 \\ 3 & 4 - \lambda \end{pmatrix} \boldsymbol{X} = \begin{pmatrix} -6 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \boldsymbol{0}$$

$$\begin{pmatrix} -6 & 2 \\ 3 & -1 \end{pmatrix} \mapsto \begin{pmatrix} -6 & 2 \\ 0 & 0 \end{pmatrix} = 2$$
 n= 1; number of free var=1

A new equation: $-6x_1 + 2x_2 = 0$,

suppose
$$x_2 = \alpha \rightarrow x_1 = \frac{1}{3}\alpha$$

 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3}\alpha \\ \alpha \end{pmatrix} = \alpha \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix}$

Thus, the second eigen vector $\mathbf{X}_2 =$

$$= \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix}$$

practice

• Suppose a transformation matrix $\mathbf{B} = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$

Problems

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 2 & 2 \\ 2 & 1 & 2 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ -2 & 1 & -1 \end{pmatrix}$$

$$\mathbf{F} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Properties :

1) If λ_1 , λ_2 ,..., and λ_k are the different eigen values and associated to the invariant vectors X_1 , X_2 , ..., X_k respectively, then the invariant vectors are linearly independent.

2) Eigen values of the transformation matrix A and A^{T} are equal.

example

Solution: $\boldsymbol{A} - \boldsymbol{\lambda} \boldsymbol{I} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix} - \boldsymbol{\lambda} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 2 & 2 - \lambda \end{pmatrix}$ $|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 2 & 2 - \lambda \end{vmatrix} = (5 - \lambda)(1 - \lambda)(1 - \lambda)$

 $\mathsf{P}(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = 0$

 $P(\lambda) = (5 - \lambda)(1 - \lambda)(1 - \lambda) = 0$ $\lambda_{1,2} = 1 \text{ and } \lambda_3 = 5$

Next step, finding invariant vector, For $\lambda = 1$, then:

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{X} = \begin{pmatrix} 2-\lambda & 2 & 1 \\ 1 & 3-\lambda & 1 \\ 1 & 2 & 2-\lambda \end{pmatrix} \mathbf{X} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix} \mathbf{H} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{n} = \mathbf{3}$$

$$\mathbf{r} = \mathbf{1}; \text{ number of free var} = \mathbf{2}$$

A new equation : $x_1 + 2x_2 + x_3 = 0 \rightarrow Free \text{ variables are:}$ $x_2 \text{ and } x_3$

A new equation : $x_1 + 2x_2 + x_3 = 0$ suppose: $x_2 = \alpha$ and $x_3 = \beta \rightarrow$ then $x_1 = -2\alpha - \beta$

Thus,
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{pmatrix} -2\alpha - \beta \\ \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

There are **two independent invariant vectors** : $\mathbf{X}_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$ and $\mathbf{X}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ For $\lambda = 5$, then :

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{X} = \begin{pmatrix} 2-\lambda & 2 & 1 \\ 1 & 3-\lambda & 1 \\ 1 & 2 & 2-\lambda \end{pmatrix} \mathbf{X} = \begin{pmatrix} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

 $\begin{pmatrix} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{pmatrix} \overset{\mathbf{H}}{\sim} \begin{pmatrix} 1 & -2 & 1 \\ -3 & 2 & 1 \\ 1 & 2 & -3 \end{pmatrix} \overset{\mathbf{H}}{\sim} \begin{pmatrix} 1 & -2 & 1 \\ 0 & -4 & 4 \\ 0 & 4 & -4 \end{pmatrix} \overset{\mathbf{H}}{\sim} \begin{pmatrix} 1 & -2 & 1 \\ 0 & -4 & 4 \\ 0 & 0 & 0 \end{pmatrix}$

n= 3 ; r = 2; number of free var = 1 \rightarrow X₁ - 2X₂ + X₃ = 0 - 4X₂ + 4X₃ = 0 A new equations : $x_1 - 2x_2 + x_3 = 0$ - $4x_2 + 4x_3 = 0$

Free variable is x_3 ; suppose: $x_3 = \alpha \rightarrow$ then $x_2 = \alpha$, and $x_1 = \alpha$ $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{pmatrix} \alpha \\ \alpha \\ \alpha \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ (1)

Thus, the third invariant vector $X_3 =$

Problems

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 0 \\ -8 & 4 & 0 \\ -12 & 4 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} -3 & -9 & -12 \\ 1 & 3 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$

similarity

Recall your mind

$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 5 & 14 & 13 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$\boldsymbol{A} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix} \quad \text{and } \boldsymbol{B} = \begin{pmatrix} 5 & 14 & 13 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{are similar}$

becuase there is non singular matrix

$$\mathbf{P} = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$$
, such that $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$.

Similarity

 Two Transformations matrix A and B called similar if there is nonsingular matrix R such that
 B = R⁻¹AR

Properties

1) Two similar matrices have same eigen values.

2) if **Y** is eigen vector of **B** which is associated to eigen value λ_i , then **X** = **RY** is eigen vector of **A** which is associated to eigen value λ_i .
The current problems : If there are any two matrix *A* and *B*, how to get a nonsingular matrix *P* such that $P^{-1}AP = B$? Now, please find eigen values and eigen vectors of

$$\mathbf{D} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Diagonal Matrix

$$\mathbf{D} = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 9 \end{pmatrix}.$$
 Eigen value of matrix **D** are $\lambda_1 = -3, \lambda_2 = 7$,

and $\lambda_3 = 9$. Eigen vectors are

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \text{ and } \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

Every nxn diagonal matrix have *n* eigen vectors which are linearly independent.

Similar to Diagonal Matrices: Diagonalization of Matrices

• Theorem:

every *n-dimensional* matrix A which have *n* eigen vectors that linearly independence are similar to diagonal matrix.

Proof:

Suppose $X_1, X_2, X_3, ..., X_n$ are invariant vectors which are associated to the eigen value $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$ such that $AX_i = \lambda_i X_i$ (*i* = 1, 2, 3, ..., *n*). Suppose $P = [X_1 \ X_2 \ X_3 \dots \ X_n]$, then $AP = A[X_1 \ X_2 \ X_3 \ \dots \ X_n] = [AX_1 \ AX_2 \ AX_3 \ \dots \ AX_n]$ $AP = \begin{bmatrix} \lambda_1 X_1 & \lambda_2 X_2 & \lambda_3 X_3 & \dots & \lambda_n X_n \end{bmatrix}$

$\mathbf{Proof...}(\mathbf{cont..})$ $\mathbf{AP} = [\mathbf{X}_1 \ \mathbf{X}_2 \ \mathbf{X}_3 \ \dots \ \mathbf{X}_n] \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix}$

 $AP = [X_1 \ X_2 \ X_3 \ \dots \ X_n] \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n)$ AP = P D $P^{-1}AP = P^{-1}P D$ $P^{-1}AP = D$

Thus, *A* similar to diagonal matrix D, because there is nonsingular matrix P such that $P^{-1}AP = D$.

• A matrices **A**_{nxn} which have *n* invariant vectors that linearly independence called diagonalizable (it can be diagonalized / similar to diagonal matrices).

Algorithm for diagonalization of matrix *Anxn* :

- (1) find eigen value of matrix **A**, that are λ_i (*i* =1,2, 3, ..., *n*)
- (2) Find eigen vectors of matrix **A** which are associated to eigen value λ_i .
- (3) if a <u>number of eigen vectors</u> < n, then matrix A is not diagonalizable. Finish.
- (4) If a <u>number of eigen vectors</u> = n, then matrix A is diagonalizable; next step:
 - (4.1). Take $P = [X1 \ X2 \ X3 \ ... \ Xn]$, where X_i are eigen vectors of matrix A.
 - (4.2). Find **P**⁻¹
 - (4.3). $P^{-1}AP = D = \text{diag}(\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n)$, with λ_i are eigen value of matrix **A**.
 - (4.4). Finish.

example

Is a matrix
$$A = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$$
 diagonalizable ?. if yes, find matrices

P such that $P^{-1}AP = D$ (diagonal).

Solution:

• Finding eigen value: $|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 1 \\ 2 & 3 - \lambda \end{vmatrix} = 0$

thus the eigien value are $\lambda_1 = 1$ and $\lambda_2 = 4$.

• Finding eigen vectors:

For $\lambda = 1$, then $(A - \lambda I)X = 0$ $\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$

the first eigen vector is $\boldsymbol{X}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

For $\lambda = 4$, then $(\mathbf{A} - \lambda \mathbf{I})\mathbf{X} = 0$ $\begin{pmatrix} -2 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$ the second eigen vector is $\mathbf{X}_2 = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$

Because matrix **A** have <u>two independent</u> <u>invariant vectors</u>, the matrix **A** is diagonalizable.

•
$$\mathbf{P} = (\mathbf{X}_1 \ \mathbf{X}_2) = \begin{pmatrix} -1 & \frac{1}{2} \\ 1 & 1 \end{pmatrix}$$

Finding inverse of P

$$\mathbf{P}^{-1} = \begin{pmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} \end{pmatrix}$$

It can be verified that : P⁻¹ A P = D.

$$\mathbf{P^{-1} A P} = \begin{pmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} -1 & \frac{1}{2} \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} = \mathbf{D}.$$

example

• Is a matrix **B** =
$$\begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

diagonalizable ?

if yes, find a nonsingular matrices **P** such that $P^{-1}BP = D$ (Diagonal).

Solution:

From slide 21 to slide 26, it can be observed:

- Eigen value are $\lambda_{1,2} = 1$ and $\lambda_3 = 5$.
- For $\lambda = 1$, the eigen vectors are :

$$\mathbf{X}_{1} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
 and $\mathbf{X}_{2} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

For λ = 5, the eigen vector is :

$$\mathbf{X}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Because a matrix **B** have three independent invariant vectors, the matrix **B** is **diagonalizable**.

•
$$\mathbf{P} = (\mathbf{X}_1 \ \mathbf{X}_2 \ \mathbf{X}_3) = \begin{pmatrix} -2 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

•
$$\mathbf{P}^{-1} = \frac{1}{4} \begin{pmatrix} -1 & 2 & -1 \\ -1 & -2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$

•
$$\mathbf{P}^{-1}\mathbf{B}\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix} = \mathbf{D}.$$

example

- Is a matrix $\mathbf{C} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 2 & 2 \\ 2 & 1 & 2 \end{pmatrix}$ diagonalizable?.
 - If yes, find a matrix **P** such that **P**⁻¹**CP** = **D** (Diagonal).

Solution:

- The eigen value of **C** are $\lambda_1 = 1$ and $\lambda_{2,3} = 2$.
- For $\lambda = 1$, the eigen vector is $X_1 = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix}$ For $\lambda = 2$, the eigen vector is $X_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$
- Because the matrix C are only have two independent vectors, the matrix C is not diagonalizable.

• Is a matrix $A = \begin{pmatrix} 3 & -2 \\ -2 & 6 \end{pmatrix}$ diagonalizable ? if yes, find a nonsingular matrices P such that $P^{-1}AP = D$ (Diagonal).

Is a matrix
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{pmatrix}$$
 diagonalizable ?. if yes, find

matrices P such that $P^{-1}AP = D$ (diagonal).

 Is F diagonalizable?, if yes, find matrices R such that R⁻¹FR = D

$$F = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$

• Is a matrix B =
$$\begin{pmatrix} 2 & -4 & 2 \\ -4 & 2 & -2 \\ 2 & -2 & -1 \end{pmatrix}$$
 diagonalizable ?

if diagonalizable, find a nonsingular matrices P such that $P^{-1}BP = D$ (Diagonal).

problem

 Is a matrix *C* diagonalizable ?. If diagonaliozable, find a matrices *R* such that *R*⁻¹*CR* = *D*.

$$C = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

Orthogonal Similarity

Similarity of Symmetric matrices

- If A is a symmetric matrices, that is A^T = A, it can be found an orthogonal matrices R such that R⁻¹AR = D (diagonal).
- Because if **R** is orthogonal, $\mathbf{R}^{-1} = \mathbf{R}^{\mathsf{T}}$ thus $\mathbf{R}^{-1}\mathbf{A}\mathbf{R} = \mathbf{R}^{\mathsf{T}}\mathbf{A}\mathbf{R} = \mathbf{D}$

Theorem

Eigen vectors of a symmetric matrices which come from the different eigen value are orthogonal

Proof:

Suppose X_1 and X_2 are invariant vectors which are associated to λ_1 and λ_2 (where $\lambda_1 \neq \lambda_2$) of symmetric matrices A, then : $AX_1 = \lambda_1 X_1$ $X_2^T A X_1 \equiv X_2^T \lambda_1 X_1$ (1) $(X_2^T A X_1)^T \equiv (\lambda_1 X_2^T X_1)^T$ $X_1^T A^T X_2 = \lambda_1 X_1^T X_2$ $X_1^T A X_2 = \lambda_1 X_1^T X_2$ (2)

proof...(*cont*..)

Meanwhile :

 $AX_2 = \lambda_2 X_2$ $X_1^T \mathbf{A} \mathbf{X}_2 = \lambda_2 X_1^T \mathbf{X}_2$ (3) $(X_1^T A X_2)^T = (\lambda_2 X_1^T X_2)^T$ $X_2^T \mathbf{A}^T \mathbf{X}_1 = \lambda_2 X_2^T \mathbf{X}_1$ $X_2^T \mathbf{A} \mathbf{X}_1 = \lambda_2 X_2^T \mathbf{X}_1$ (4)from (2) and (3) : $\lambda_1 X_1^T \mathbf{X}_2 = \lambda_2 X_1^T \mathbf{X}_2$ $\lambda_1 X_1^T \mathbf{X}_2 - \lambda_2 X_1^T \mathbf{X}_2 = 0$ $(\lambda_1 - \lambda_2) X_1^T X_2 = 0 \text{ or } X_1^T X_2 = 0$ This mean that X_1 orthogonal to X_2 .

Consequence...

For a symmetric matrices, The theorem above assure of an existence of orthogonal matrices *R*, such that *R^TAR = D*.

For a symmetric matrices A, algorithm to find orthogonal matrices R such that R⁻¹AR = D (diagonal) as follow:

- (1) Find eigen value of matrix **A**
- (2) Find invariant vectors of matrix A
- (3) If all of the eigen values are different, then invariant vectors X1, .., Xn are orthogonal.
 - (3.1) normalized X1, ..., Xn become new vectors Y1, Y2,..., Yn.
 - (3.2) orthogonal matrix **R** = [Y1 Y2 ... Yn].
- (4) If there are same eigen value, suppose $\lambda_1 = \lambda_2$, then eigen vector X1 and X2 are not orthogonal; but eigen vectors X3, ..., Xn are orthogonal.
 - (4.1) apply Gram-Schmidt process to X1 and X2 to get a new orthogonal vectors W1 and W2.
 - (4.2) take W3 = X3, ..., Wn = Xn
 - (4.3) normalized vectors W1, W2, W3, ..., Wn become a new vectors Y1, Y2, Y3, .., Yn.
 - (4.4) orthogonal matrix **R** = [Y1 Y2 ... Yn].
 - (4.5) *R*⁻¹*AR* **= ***D* (diagonal). finish.

example

 find an orthogonal matrices *R* such that *R*⁻¹*AR* = *D* (diagonal), if

$$A = \begin{pmatrix} -4 & -6 \\ -6 & 1 \end{pmatrix}$$

Solution:

- Observe that A is symmetric, because A^T = A
- The eigen value of **A** are $\lambda_1 = 5$ and $\lambda_2 = -8$ For $\lambda_1 = 5$, the eigen vector $\mathbf{X}_1 = \begin{pmatrix} -\frac{2}{3} \\ 1 \end{pmatrix}$

- For $\lambda_2 = -8$, the eigen vector $\mathbf{X}_2 = \begin{pmatrix} \frac{3}{2} \\ 1 \end{pmatrix}$ Observe that \mathbf{X}_1 and \mathbf{X}_2 are orthogonal, $\mathbf{X}_1 \cdot \mathbf{X}_2 = 0$.
- Normalize X₁ and X₂

$$\mathbf{g_1} = \frac{\mathbf{X}_1}{\|\mathbf{X}_1\|} = \begin{pmatrix} -\frac{2}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} \end{pmatrix} \text{ , and } \mathbf{g_2} = \frac{\mathbf{X}_2}{\|\mathbf{X}_2\|} = \begin{pmatrix} \frac{3}{\sqrt{13}} \\ \frac{2}{\sqrt{13}} \end{pmatrix}$$

• Orthogonal matrix **R** = (**g**₁ **g**₂) =
$$\begin{pmatrix} -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \end{pmatrix}$$

•
$$\mathbf{R}^{-1} = \mathbf{R}^{\mathsf{T}} = \begin{pmatrix} -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \end{pmatrix}$$

It can be verified that R⁻¹AR = D

$$\begin{pmatrix} -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \end{pmatrix} \begin{pmatrix} -4 & -6 \\ -6 & 1 \end{pmatrix} \begin{pmatrix} -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & -8 \end{pmatrix}$$

example

find orthogonal matrices *P* such that
P^TLP = *D* (diagonal), if

$$\mathbf{L} = \begin{pmatrix} 7 & -2 & 1 \\ -2 & 10 & -2 \\ 1 & -2 & 7 \end{pmatrix}$$

Solution:

- Observe that L is symmetric, because L^T = L
- The eigen value of L are $\lambda_{1,2} = 6$ and $\lambda_3 = 12$

• For $\lambda = 6$, the eigen vector $\mathbf{X}_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ and $\mathbf{X}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ For $\lambda = 12$, the third eigen vector $\mathbf{X}_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$

Observe that X₁ and X₃ are orthogonal, X₁.X₃ = 0; beside X₂ and X₃ are also orthogonal, X₂.X₃ = 0. Meanwhile X₁ and X₂ are not orthogonal, why?

Now, use gram-schmidt process to make X₁ and X₂ orthogonal:

$$w_1 = X_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
 and $w_2 = X_2 - \frac{X_2 \cdot X_1}{X_1 \cdot X_1} X_1 = \begin{pmatrix} -\frac{1}{5} \\ \frac{2}{5} \\ 1 \end{pmatrix}$

and also take
$$w_2 = X_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
 (why?).

Normalize w₁, w₂, and w₃ become g₁, g₂, and g₃ respectively, thus:
$$\mathbf{g}_{1} = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \\ 0 \end{pmatrix}, \quad \mathbf{g}_{2} = \begin{pmatrix} -\frac{1}{\sqrt{30}} \\ \frac{2}{\sqrt{30}} \\ \frac{5}{\sqrt{30}} \end{pmatrix}, \text{ and } \mathbf{g}_{3} = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}$$
$$\mathbf{P} = (\mathbf{g}_{1} \, \mathbf{g}_{2} \, \mathbf{g}_{3}) = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{30}} & -\frac{2}{\sqrt{6}} \\ 0 & \frac{5}{\sqrt{30}} & \frac{1}{\sqrt{6}} \end{pmatrix}$$

• It can be shown that
$$\mathbf{P}^{\mathsf{T}}\mathbf{L}\mathbf{P} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 12 \end{pmatrix} = \mathbf{D}$$

practice

find an orthogonal matrices *R* such that
R⁻¹*AR* = *D* (diagonal)

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

problem

find an orthogonal matrices *R* such that
R^TBR = *D* (diagonal)

$$\mathsf{B}=\begin{pmatrix} 2 & 0 & -1\\ 0 & 2 & 0\\ -1 & 0 & 2 \end{pmatrix}$$

practice

find an orthogonal matrices *R* such that
R^TCR = *D* (diagonal)

$$\mathbf{C} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

problems

find an orthogonal matrices *R* such that
R⁻¹*ER* = *D* (diagonal)

$$\mathbf{E} = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 4 \end{pmatrix}$$

find an orthogonal matrices *R* such that
R^TFR = *D* (diagonal), if

$$\mathbf{F} = \begin{pmatrix} 4 & -1 & 1 \\ -1 & 4 & -1 \\ 1 & -1 & 4 \end{pmatrix}$$

find an orthogonal matrices *R* such that
R^TGR = *D* (diagonal), if

$$\mathbf{G} = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$

find orthogonal matrices *R* such that
R⁻¹*HR* = *D* (diagonal), if

$$H = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 5 & 4 \\ 2 & 4 & 5 \end{pmatrix}$$

find orthogonal matrices *R* such that
R⁻¹*KR* = *D* (diagonal), if

$$\mathbf{K} = \begin{pmatrix} 7 & -4 & -4 \\ -4 & 1 & -8 \\ -4 & -8 & 1 \end{pmatrix}$$

Minimum Polynomial

Characteristics Polynomial

Suppose given a *nxn* matrix **A**:

- Characteristics Polynomial of **A** is $P(\lambda) = |\mathbf{A} - \lambda \mathbf{I}|$
- From properties of adjoint matrices:

• Analogy : $(\mathbf{A} - \lambda \mathbf{I}) \operatorname{adj}(\mathbf{A} - \lambda \mathbf{I}) = |\mathbf{A} - \lambda \mathbf{I}| \mathbf{I}$ $(\mathbf{A} - \lambda \mathbf{I}) \operatorname{adj}(\mathbf{A} - \lambda \mathbf{I}) = P(\lambda) \mathbf{I}$

Theorem:

• Every *n*-dimensional square matrices A is zero value of it characteristic polynomial. \rightarrow Thus, if P(λ) = |**A** - λ **I**|, then P(**A**) = **0**.

example:

- $P(\lambda) = |A \lambda I| = (2 \lambda)(1 \lambda) 6 = \lambda^2 3\lambda 4$
- $\mathbf{P}(\mathbf{A}) = \mathbf{A}^2 3\mathbf{A} 4\mathbf{I} = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}^2 3 \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- $\mathbf{P}(\mathbf{A}) = \begin{pmatrix} 10 & 9 \\ 6 & 7 \end{pmatrix} \begin{pmatrix} 6 & 9 \\ 6 & 3 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \mathbf{0}.$

Minimum Polynomial

• Suppose $P(\lambda)$ is characteristics polynomial of square matrices A, if $m(\lambda)$ which is least degree of those polynomial such that m(A) = 0, then $m(\lambda)$ called minimum polynomial of **A**.

Algorithm for Finding Minimum Polynomial

- If $\mathbf{A} = a_0 \mathbf{I}$, then $m(\lambda) = \lambda a_0$
- If $\mathbf{A} \neq \mathbf{a}_0 \mathbf{I}$ for all \mathbf{a}_0 , but $\mathbf{A}^2 = \mathbf{a}_1 \mathbf{A} + \mathbf{a}_0 \mathbf{I}$, then m(λ) = $\lambda^2 - \mathbf{a}_1 \lambda - \mathbf{a}_0$.
- If $\mathbf{A}^2 \neq a_1 \mathbf{A} + a_0 \mathbf{I}$ for all a_1 and a_0 , but $\mathbf{A}^3 = a_2 \mathbf{A}^2 + a_1 \mathbf{A} + a_0 \mathbf{I}$, then minimum polynomial is $m(\lambda) = \lambda^3 a_2 \lambda^2 a_1 \lambda a_0$.
- etc.

Trial and Error Method

By finding factors of P(λ), so m(λ) is one of the factors of P(λ), such that m(A) = 0.

example

• Find minimum polynomial of :

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$$

Solution:

• The characteristics polynomial of **A** is

$$\mathsf{P}(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & 1 & 2 \\ 1 & 1 - \lambda & 2 \\ 1 & 1 & 2 - \lambda \end{vmatrix} = (\mathbf{4} - \lambda) \lambda^2$$

- The possibilities of minimum polynomial are : (4 - λ), or λ², or (4 - λ) λ; but only polynomial m(λ) = (4 - λ) λ satisfying the condition : m(A) = (4I - A) A = 0.
- Thus, the minimum polynomial is $m(\lambda) = (4 - \lambda) \lambda = 4\lambda - \lambda^2$